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By using the Boltzmann approach, we study the steady-state dynamics of a granular capped rectangle placed
in a two-dimensional bath of thermalized hard disks. Hard core collisions are assumed elastic between disks
and inelastic between the capped rectangle and the disks, with a normal coefficient of restitutiona,1.
Assuming a Gaussian ansatz for the probability distribution functions, we obtain analytical expressions for the
granular temperatures. We show the absence of equipartition and investigate both the role of the anisotropy of
the capped rectangle and of the relative ratio of the bath particles to the linear sizes of the capped rectangle. In
addition, we investigate a model of a capped rectangle with two normal coefficients of restitution for collisions
along the straight and curved surfaces of the capped rectangle. In this case one observes equipartition for a
nontrivial ratio of the normal coefficient of restitutions.
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I. INTRODUCTION

Granular matter is characterized by the existence of dissi-
pative forces between particles. In order to sustain a collec-
tive motion, it is necessary to provide energy continuously.
When power supply is sufficiently copious, the assembly of
granular particles attains a nonequilibrium steady state
sNESSd f1,2g. An important parameter is the granular tem-
perature that is defined as the second moment of the velocity
distribution. It is a source of both fascination and inconve-
nience that the well-known properties of temperatures char-
acterizing thermal systems are not necessarily transferable to
granular temperatures. In particular, recent theoreticalf2–8g
and experimentalf9,10g work, has shown that in a binary
granular system the two species have different granular tem-
peratures that are nontrivial functions of the microscopic pa-
rameterssmass, size, coefficient of restitution,…d. Although
the absence of equipartition is not surprising for a dissipative
system sustained in a NESS, quantitative investigations are
necessary since the granular temperatures play an important
role in hydrodynamic descriptions of these systems. For ex-
ample, the absence of equipartition in binary mixtures yields
granular temperature gradients which enhance segregation
f11g. In addition, the extension of the fluctuation-dissipation
theorem is an important issue in the context of granular gases
f12g. Other consequences of the absence of equipartition in-
clude the ability of a binary system to exhibit a segregation
phenomena in a “Maxwell demon” experimentf13g. The
reader is also referred to the homogeneous cooling state of a
granular mixturef14g and the impurity problemf15g.

Most of the above-referenced studies examined assem-
blies of spherical particles. Yet, in reality, the particles com-
posing granular systems are to some degree anisotropic and,
in many cases, strongly so. Even if the particles are smooth,
each collision results in some exchange and, possibly, loss of
rotational kinetic energy. There are relatively few studies of
these systemssbut see, for example, Refs.f16–18gd and
fewer still that focus specifically on equipartition. Huthmann
et al. f19g used kinetic theory to examine the free cooling of
granular needles in three dimensions and, more recently, two

of the present authors studied a two-dimensional system
composed of a single granular needle in a thermalized bath
of point particlesf20g in a NESS. For inelastic needle-point
collisions, the rotational granular temperature is smaller than
the translational one while both are less than the bath tem-
perature. The validity of the theoretical predictions was con-
firmed by a comparison with numerical simulations of the
model. While this study provided useful insights, the infini-
tesimal width of the particle is obviously an idealization.

Our objective in the present article is to consider a more
realistic system where both the tracer particle and bath par-
ticles are of a finite extent. Specifically, we consider a capped
rectangle in a bath of thermalized hard disks. Fortunately,
despite the increased complexity, it is still possible to obtain
an analytic solution of the steady state kinetic equations. The
principal difference between the capped rectangle-disk and
needle-point systems is that two kinds of collision are pos-
sible in the former compared to one in the latter: a disk can
collide with either the sides or the caps of the capped rect-
angle. If each type of collision is characterized by different
normal coefficients of restitution, we show that equipartition
between the translational and rotational degrees of freedom
can be obtained for specific values of these parameters. Con-
sequently, for appropriate ranges of the coefficients of resti-
tution the translational granular temperature may be less than
or greater than the rotational one.

II. MODEL AND COLLISION RULES

We investigate a two-dimensional system consisting of a
hard capped rectangle of total lengthL+2R, radiusR and
massM with a moment of inertiaI sthe value of which is
given in Appendix Ad. The bath consists of hard disks of
massm and of radiusr. Collisions between bath particles are
assumed elastic, and the temperatureT of the disks remains
constant. Conversely, collisions between disks and the
capped rectangle are inelastic. In the following, we detail the
collision rules that are necessary to develop the kinetic
theory.
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The vector positions of the center of mass of the capped
rectangle and a disk particle are denoted byr 1 and r 2, re-
spectively. The orientation of the capped rectangle is speci-
fied by a unit vectoru1 that points along the long axis. Let
r 12=r 1−r 2 and u1

' denote a vector perpendicular tou1. A
collision between a capped rectangle and a disk can take
place either on the linear part or on the circular parts of the
former. Let O and C denote the center of the capped rect-
angle and the point of collision, respectively. We definel as
the projection ofOC on the long axis:l=OC ·u1. At the
instant of collision, the quantities just introduced satisfy the
following equations:

ur 12 ·u1
'u = sR+ rd, s1d

if ulu,L /2, and

ur 12 ·uru = sR+ rd +

LSulu −
L

2
D

2R
, s2d

if R. ulu−L /2.0, whereur denotes the unit vector of the
collision axisssee Fig. 1d. The relative velocity of the point
of contactV is given by

V = v12 + v1 Ã OC, s3d

wherev1 denotes the angular velocity.
The pre- and post-collisional quantitiessthe latter are la-

beled with a primed satisfy the following:
• Total momentum conservation,

Mv81 + mv82 = Mv1 + mv2. s4d

.
• Angular momentum conservation with respect to the

point of contact,

Iv18k = Iv1k + mOC Ã sv2 − v82d, s5d

wherek is a unit vector perpendicular to the plane.
As a result of the collision, the relative velocity of the

contacting points changes instantaneously according to the
following relations:

V8 ·u1
' = − aV ·u1

', s6d

V8 ·u1 = V ·u1, s7d

wherea is the normal coefficient of restitution.
When the collision occurs on the circular parts of the

capped rectangle, the collision rules are given by

V8 ·ur = − aV ·ur , s8d

V8 ·uu = V ·uu, s9d

whereur anduu denote the unit vectors associated with the
circular part of the capped rectanglessee Fig. 1sbdd and u
denotes the angle between the direction of the long axis of
the capped rectangle and the axis defined by the contact
point and the center of the disk.

The tangential coefficient of restitution is set to one for
the sake of simplicity. This choice is reflected in the form of
Eqs.s7d–s9d.

By combining Eqs.s3d–s6d one obtains, after some alge-
bra, the change of the capped rectangle momentumDp
=Msv18−v1d for a collision along the linear part,

Dp ·u1
' = −

s1 + adV ·u1
'

1

m
+

1

M
+

l2

I

, s10d

for uluøL /2 and at the two ends of the capped rectangle,

Dp ·ur = −
s1 + adV ·ur

1

m
+

1

M
+

L2 sin2 u

4I

, s11d

for R. ulu−L /2.0 with cosu=sl−L /2d /R.

III. KINETIC THEORY

Since we are interested in the homogeneous state, the dis-
tribution functionfsv1,v1d of the capped rectangle obeys the
pseudo-Liouville equation,

FIG. 1. Geometry of the capped rectangle and a disk in the
plane:r 12 denotes a vector joining the point labeled 2 and the center
of the capped rectangle,l is the projection of the vectorOC on the
long axis of the capped rectangle.sad Collision between the recti-
linear part of the capped rectangle and a disk,u1 is a unit vector
along the long axis of the capped rectangle andu1

' is a unit vector
perpendicular to the axis of the capped rectangle.sbd Collision be-
tween the circular part of the capped rectangle and a disk.ur anduu

are unit vectors normal and tangential to the surface at the point of
contact, respectively.
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]fsv1,v1d
]t

=E du1

2p
E dv2E dr 2 T̄12f

s2dsv1,v1,v2d,

s12d

where f s2dsv1,v1,v2d is the distribution function of the

capped rectangle and a disk, andT̄12 is the collision
operator between a capped rectangle and a disk. The
number density of the bath particlesn is given by
n=edv1 dv1 dv2f s2dsv1,v1,v2d.

Defining the granular temperatures as quadratic average
of the appropriate velocity distribution, one hasTT
=M /2kv2l andTR= Ikv2l for the translational and rotational
granular temperatures, respectivelysthe angular brackets de-
note an average with respect to the velocity distribution func-
tion of the capped rectanglefsv1,v1dd. By taking the second
moment with respect of the velocity and of the angular ve-
locity of Eq. s12d, one obtains

2 ]TT

M ]t
=E dv1E dv1 ]tfv1

2fsv1,v1dg

=E ¯E dv1 dv1
du1

2p
dv2 dr 2 T̄12f

s2dsv1,v1,v2dv1
2,

s13d

]TR

I ]t
=E dv1E dv1 ]tfv1

2fsv1,v1dg

=E ¯E dv1 dv1
du1

2p
dv2 dr 2 T̄12f

s2dsv1,v1,v2dv1
2.

s14d

In the stationary state the time derivatives of the left-hand
side of these two equations are equal to zero.

By considering the integrals, Eqs.s13d and s14d as inner
products, the time dependence can be assigned to the dy-
namical variables,v1 andv1, and this requires the introduc-

tion of the adjoint ofT̄12, T12 sfor more details, seef21gd.
The collision operator between the capped rectangle and a

disk, T12, must include the change in quantitiessi.e., velocity
and angular momentumd produced during the infinitesimal
time interval of the collision. This operator is different from
zero only if the two particles are in contact and if the par-
ticles were approaching just before the collisionf22g. For a
collision between a disk and the rectilinear part of the capped
rectangle, the explicit form of the operator, given by

T12 ~ QsL/2 − uluddsur 12 ·u1
'u − r − Rd

3Udur 12 ·u1
'u

dt
UQS− Udur 12 ·u1

'u
dt

UDsb12 − 1d,

s15d

whereb12 is an operator that changes pre-collisional quanti-
ties to post-collisional quantities andQsxd is the Heaviside
function, and for a collision at two ends of the capped rect-
angle,

T12 ~ QsR+ L/2 − uludQsulu − L/2d

3dSur 12 ·uru − Sr + R+
L

2R
Sulu −

L

2
DDD

3Udur 12 ·uru
dt

UQS− Udur 12 ·uru
dt

UDsb12 − 1d. s16d

.
The others terms of the collision operator correspond to

the necessary conditions of contactQsL /2−uludd(ur 12·u1
'u

−sr +Rd), and approachQs−udur 12·u1
'u /dtud in the first

case andQsR+L /2−uludQsulu−L /2dd(ur 12·uru−fr +R+sL /
2Rdsulu−L /2dg), and approachQs−udur 12·uru /dtud in the sec-
ond case.

In order to obtain a tractable solution we invoke the as-
sumption of molecular chaos that allows the factorization of
two particle distribution function,

f s2dsv1,v1,v2d = fsv1,v1dFsv2d, s17d

where fsv1,v1d is the angular and translational velocity dis-
tribution function of the capped rectangle andFsv2d is the
velocity distribution function of a disk. This assumption is
valid in the limit of low density and corresponds to the
Boltzmann approximation.

By taking the second moments of the distribution function
of the capped rectangle and after substitution of the collision
operatorsEq. s15dd, one obtains explicitly for the transla-
tional kinetic energy,

E ¯E dr 2 dv1 dv2 dv1 du1FQsL/2 − uludd„ur 12 ·u1
'u

− sr + Rd…Udur 12 ·u1
'u

dt
UQS− Udur 12 ·u1

'u
dt

UD
3fsv1,v1dFsv2dDE1

T + QsR+ L/2 − uludQsulu − L/2d

3dXur 12 ·uru − Fr + R+
L

2R
Sulu −

L

2
DGC

3Udur 12 ·uru
dt

UQS− Udur 12 ·uru
dt

UD fsv1,v1dFsv2dDE1
TG

= 0. s18d

where DeltaE1
T is the energy change of the capped rectangle

during a collision with a both disk.
A similar equation can be written for rotational kinetic

energy. Since the impulse of the collision depends on the
location of the impact, it is easy to show that the solution is
not a Gaussian, a property already observed in the model of
a needle and pointsf20g. However, the actual distribution is
expected to be close to Gaussian, if the normal coefficient of
restitution is not too small. Moreover, when the anisotropy of
the granular particle goes to zero, one recovers the results
obtained by Martin and Piaseckif2g, i.e., the velocity distri-
bution is exactly Gaussian for all values of the normal coef-
ficient of restitution. Conversely, when the anisotropy is very
large, one approaches the needle-point system for which we
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showedsby simulationd that the deviation from a Gaussian
distribution is quite small, even for coefficients of restitution
of 0.2 f20g.

Since the deviations from the Maxwell distribution are
small, we use it as a trial function. That is, we assume that

fsv1,v1d ~ expS−
Mv1

2

2gTT
−

Iv1
2

2gRT
D , s19d

wheregT andgR are the ratios of the translational and rota-
tional capped rectangle temperatures to the bath temperature
T, respectively. The velocity distribution functionFsv2d of
bath particles is given exactly by

Fsv2d , expS−
mv2

2

2T
D , s20d

since bath particles interact by elastic collisions.
In summary, in order to obtain the granular temperatures

of the capped rectangle, it is necessary tosid calculate the
change of translational and rotational energy occurring dur-
ing a collision; sii d perform an average over all degrees of
freedom of the collision integral.

IV. CALCULATION AND RESULTS

A. Energy changes during a collision

When a disk collides with the capped rectangle, the
change of the translational kinetic energy of the latter is
given by

DE1
T =

M

2
„sv18d

2 − sv1d2
…

= Dp ·v1 +
1

M

Dp2

2

= − s1 + ad
V ·u1

'v1 ·u1
'

1

m
+

1

M
+

l2

I

+
1

2M

s1 + ad2sV ·u1
'd2

S 1

m
+

1

M
+

l2

I
D2 ,

s21d

for ulu,L /2, and

DE1
T = −

s1 + adV ·urv1 ·ur

1

m
+

1

M
+

L2 sin2 u

4I

+
1

2M

s1 + ad2sV ·urd2

S 1

m
+

1

M
+

L2 sin2 u

4I
D2 .

s22d

for R. ulu−L /2.0.
The collision also results in a change of rotational energy,

for ulu,L /2,

DE1
R =

I

2
„sv18d

2 − sv1d2
…

= −
ls1 + ad

2

V ·u1
'sv18 + v1d

1

m
+

1

M
+

l2

I

= − ls1 + ad
V ·u1

'v1

1

m
+

1

M
+

l2

I

+
l2s1 + ad2sV ·u1

'd2

2IS 1

m
+

1

M
+

l2

I
D2 ,

s23d

and forR. ulu−L /2.0,

DE1
R = − s1 + ad

L sinuV ·urv1

2S 1

m
+

1

M
+

L2 sin2 u

4I
D

+
s1 + ad2L2 sin2 usV ·urd2

8IS 1

m
+

1

M
+

L2 sin2 u

4I
D2 . s24d

B. Granular temperatures

After inserting Eqs.s19d and s20d in Eq. s18d it is neces-
sary to perform integrations over each variable in the corre-
sponding equation for the rotational energy. Details of this
rather technical task are given in Appendix B. After some
tedious calculation, one obtains the following set of equa-
tions:

bfcI1
01sa,kd + s1 − cdJ1

01sa,kdg

=
1 + a

2
fcI2

03sa,kd + s1 − cdJ2
03sa,kdg, s25d

afcI1
11sa,kd + s1 − cdJ1

11sa,kdg

=
1 + a

2
fcI2

13sa,kd + s1 − cdJ2
13sa,kdg, s26d

where

k =
L2

4IS 1

m
+

1

M
D , s27d

a = gR
M + m

M + mgT
, s28d

b = gT
M + m

M + mgT
. s29d

and

c =
L/2

L/2 + sr + Rd
s30d

and Im
np andJm

np are given by
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Im
npsu,vd =E

0

1

dx
x2ns1 + uvx2dp/2

s1 + vx2dm , s31d

Jm
npsu,vd =E

0

p/2

du sin2nsud
s1 + uv sin2 udp/2

s1 + v sin2 udm . s32d

Explicit expressions for the integrals appearing in Eqs.
s25d and s26d are given in Appendix C. Equations26d is an
implicit equation fora that, for a given value ofa, can be
solved with standard numerical methods.b is then easily
obtained by calculating the ratio of integrals of Eq.s25d.
Finally, from the values ofa and b, gT and gR can be ob-
tained from Eqs.s28d and s29d.

A first check is the elastic case,a=1, for which one ob-
tains a=b=1 which givesgT=1 and, sincea/b=gR/gT, gR
=1, i.e., the temperatures of translational and rotational de-
grees of freedom are the same and correspond to the bath
temperature, a property of an equilibrium system.

In the limit R→0 andr →0, for whichc→1 correspond-
ing to a needle in a bath of point particles, one recovers the
results of Ref.f20g. More interesting is the limitR→0 with
r remaining finite, i.e., a needle in a bath ofdisks. By using
Eq. s30d one obtains thatc=L / sL+2rd. Sincec,1, unlike
the simple needle-point system, there is a contribution result-
ing from collisions between bath particles and the needle’s
tips. This type of collision is dominant when the bath par-
ticles are larger than the longest dimension of the anisotropic
particle.

To illustrate the effect of this contribution, Figs. 2sad and
2sbd compare the system of a needle in a bath of point par-
ticles and the system of a needle in a bath of disks, the radius
of disks r are equal toL /4 in Fig. 2sad and r =9L /2 in Fig.
2sbd. It is noticeable that the translational and rotational tem-
peratures of the latter system are smaller than those of the
needle in a bath of points, an effect that becomes more pro-
nounced when the radius of the disks becomes larger than the
length of the needle.

The differencegT−gR is shown in the insets for the needle
and the bath of points and for the needle and the bath of
disks. Note that the translational temperature is always larger
than the rotational temperature and that the difference de-
pends very weakly on the size of the radius of the bath par-
ticle. Additionally, the difference increases when the coeffi-
cient of restitution decreases from 1selastic cased, reaches a
maximum for a value ofa,0.3 and decreases slightly when
the coefficient of restitution decreases further.

Figure 3 shows the influence of the anisotropy of the
tracer particle. The rotational temperature is always lower
than the translational temperature whatever the elongation of
the particles, but the effect is greater when the elongation is
large. The two upper curves correspond the translationalsfull
curved and rotational sdashed curved temperature of the
capped rectangle whenL=R, the two intermediate curves to
granular temperatures whenL=3R, and the two lower curves
for a capped rectangle withL=10R.

When the anisotropy of the capped rectangle approaches
zero, i.e.,L /R→0, c→0, one can show by using Eqs.s25d
and s26d that

gT =
1 + a

2 +
m

M
s1 − ad

, s33d

which is the the result of Martin and Piaseckif2g for a
spherical tracer particle in a bath of spherical particles.

FIG. 2. Ratio of the translationalsfull curved gT and rotational
gR sdashed curved granular temperature to the temperature of the
bath versus the normal coefficient of restitutiona for a system of a
needle and a bath of points and a system of a needle and a bath of
disks forc=2/3 sad and forc=1/10. The curves corresponding to
the needle-point system are always above those for the needle-disk
systemsbd. The insets display the differencesgT−gR vs a for the
needle in the bath of diskssfull curved and the needle in the bath of
points sdashed curved.
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Moreover, the limitL /R→0 leads ro equipartition between
the rotational and translational granular temperatures, a re-
sult which is different from a model of pure spherical par-
ticles where, in the absence of tangential friction, the par-
ticles cannot exchange rotational energy. In physical
systems, the particles are never completely spherical and our
model shows that if an infinitesimal amount of anisotropy is
present, the translational and rotational temperatures are
equal in the steady state. Although our analysis provides no
quantitative information about the relaxation time to reach
this NESS, it is likely to be very long in this limit of small
anisotropy.

C. Influence of mass ratio

We consider a homogeneous capped rectangle of massM
in a bath of disks each of massm for which M Þm. When
m/M→0 one obtains, from Eqs.s25d and s26d, that

gT = gR =
1 + a

2
, s34d

i.e., equipartition between the degrees of freedom of the
tracer particle, but not between the bath and the tracer par-
ticle. This is, moreover, the same result for a needle in a bath
of point particles.

We conjecture that this result is general in the sense that
we expect equipartition between the different degrees of
freedom of the tracer particle in a bath of light particles,
whatever the shape of the tracer particle and the dimension
of the system. The behavior for finite values of the ratio
m/M is shown in Fig. 4. The granular temperatures decrease
when the ratiom/M increases, and the translational tempera-

ture remains higher than the rotational temperature for each
value ofa.

V. NONUNIFORM COEFFICIENT OF RESTITUTION

In practice it may be difficult to construct a capped rect-
angle for which the coefficient of restitution is constant over
the entire perimeter. It is clear, for example, that if the object
is composed of a homogeneous viscoelastic material, colli-
sions with the ends will be characterized by a smaller coef-
ficient of restitution than collisions with the linear part. This
effect becomes more pronounced as the elongationsL /Rd
increases. Other possibilities exist for a nonhomogeneous
capped rectangle composed of two or more materials. For
example, a hard material may be used to construct the caps.
In addition, the coefficient of restitution could depend on the
relative velocity of the point of impactf23g, an effect that
one neglects here as a first approximation.

As a first approach to describe this possibility, we con-
sider in this section a capped rectangle where the coefficient
of restitution is equal toa1 for a collision along the rectilin-
ear part of the object and equal toa2 for one along the
circular part: see Fig. 5. Using the procedure outlined above
one obtains the following set of closed equations:

b„s1 + a1dcI1
01sa,kd + s1 + a2ds1 − cdJ1

01sa,kd…

=
s1 + a1d2

2
cI2

03sa,kd +
s1 + a2d2

2
s1 − cdJ2

03sa,kd,

s35d

FIG. 3. Ratio of the translationalsfull curved gT and rotational
gR sdashed curved granular temperature to the temperature of the
bath versus the normal coefficient of restitutiona for a capped
rectangle and a bath of disksr =R, for different values of the aniso-
tropy, L=R,3R,10R, top to bottom in each group.

FIG. 4. Ratio of the granular temperaturesgT sfull curved gR

sdashed curved to the bath temperature as a function of the mass
ratio m/M, for a homogeneous capped rectangle withc=4/7.
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a„s1 + a1dcI1
11sa,kd + s1 + a2ds1 − cdJ1

11sa,kd…

=
s1 + a1d2

2
cI2

13sa,kd +
s1 + a2d2

2
s1 − cdJ2

13sa,kd.

s36d

Figure 6 shows the ratio of translational and rotational tem-
perature of a capped rectangle withR=r and L=2R to the
temperature of the bath as a function of the normal coeffi-
cient of restitutiona2 with a fixeda1=0.5. One notes that the
translational temperature becomes smaller than the rotational
temperature fora2.0.765. When the two curves cross, eq-
uipartition is recovered, but unlike the limiting cases dis-
cussed above of a capped rectangle with a uniform coeffi-
cient of restitution slight bath particles, infinitely small
anisotropyd, for a nontrivial value of coefficient of restitution
a2 and, moreover, for larger values ofa2 the ratio of tem-
peratures is inverted.

One can determine in general when equipartition is recov-
ered for a capped rectangle with two coefficients of restitu-
tion. Using the relationa=b sassumption of equipartitiond
and Eqs.s35d and s36d, one obtains two implicit equations
with the three parametersa1, a2 anda. A simple numerical
procedure allows us to obtaina2 as a function ofa1.

Figure 7 shows the equipartition lines in thesa1,a2d
space. Above each line, corresponding to a given elongation
of the rectangle,TR.TT while the reverse inequality applies
to the region below the line. It is noticeable that as the elon-
gation increases, the region of thesa1,a2d space whereTR

.TT decreases.
Figure 8 shows the role of the size of the bath particles on

the existence of equipartition of a capped rectangle of length
L=8R. For small bath particles, only a small range ofa1
sbetween 0 and,0.3d with a smaller range ofa2 s between
,0.89 and 1d allows equipartition for the tracer particle. For
larger bath disks, all values ofa1 sbetween 0 and 1d are
available with a smaller corresponding range ofa2.

VI. CONCLUSION

We have investigated the influence of the anisotropy of a
tracer particle in a bath of thermalized disks in two dimen-
sions. By using a mean-field approach, we have obtained
analytical results for the rotational and translational tempera-
tures. For a homogeneous capped rectangle with a uniform
normal restitution coefficient, the translational temperature is
always higher than the rotational temperature, with the dif-
ference depending on the elongation of the tracer particle, the
size of the bath particles and the mass ratio.

At present, the exact dependence of the coefficient of res-
titution on the position of the point of impact is unknown. It
seems likely, however, that it is not constant along the pe-

FIG. 5. Sketch of the capped rectangle with two coefficients of
restitutiona1 srectilinear partd anda2 scircular partd.

FIG. 6. Ratio of the translationalsfull curved gT and rotational
gR sdashed curved granular temperature to the temperature of the
bath versus the normal coefficient of restitutiona2 with a normal
coefficient of restitutiona1=0.5 for a homogeneous capped rect-
angle withM =m, L=2R andR=r. Note that equipartition is recov-
ered for a nontrivial value ofa2.

FIG. 7. a1 vs a2 where equipartition is obtained forr =R and
different values ofL=R,2R, . . . ,5R from bottom to top.
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rimeter. As a first approximation, we considered an extension
of the model where it takes on two values: one for collisions
with the linear part and another for collisions with the caps.
In this case the difference between the translational and ro-
tational granular temperatures can be either positive or nega-
tive depending on the values of the coefficients of restitution
and the other parameters. It is clearly possible to generalize
the calculation to allow for a continuously varying restitution
coefficient and an arbitrary convex body.

It would also be interesting to investigate a system of a
tracer particle with a small anisotropy where the tangential
coefficient of restitution has a nontrivial values−1,aT

,1d where the limits correspond to a perfectly rough and a
perfectly smooth surface, respectively. The intermediate situ-
ation corresponds to some friction which is important in
some granular systems.

APPENDIX A: MOMENT OF INERTIA

For a homogeneous capped rectangle, the moment of in-
ertia is given by

IOz=E E
S

rsx2 + y2ddx dy, sA1d

and the mass of the system is

M =E E
S

r dx dy= rspR2 + 2LRd, sA2d

which gives

IOz= rRHpRFR2

2
+ SL

2
D2G +

2

3
LF3R2 + SL

2
D2GJ .

sA3d

By substituting the density as a function of the total mass of
the capped rectangle,

I = M3 2LS3R2 + SL

2
D2D

3
+ pRSR2

2
+ SL

2
D2D

pR+ 2L
4 . sA4d

Two well-known limits are recovered,

lim
R→0

IOz=
ML2

12
, sA5d

lim
L→0

IOz=
MR2

2
. sA6d

For an inhomogeneous capped rectangle, the moment of in-
ertia depends on the mass distribution. However, it is pos-
sible to determine the lower and upper bounds for allowable
values.

A trivial lower bound of zero is obtained when the mass is
concentrated at the center. Conversely, when the mass is dis-
tributed equally at the two extremities of the objectspoint
masses ofM /2 at a distance ofL+R from the center on each
sided, one obtains

I = MsL/2 + Rd2, sA7d

which gives the upper bound for the moment of inertia.

APPENDIX B: NEEDLE AVERAGE ENERGY
LOSS

As for binary mixtures of spheresf4g, we use a Gaussian
ansatz for the distribution functions and introduce two differ-
ent temperatures corresponding to the translational and rota-
tional degrees of freedom of the needlef24g.

The homogeneous distribution functions of the needle and
of the points are then given, respectively, by Eqs.s19d and
s20d

We introduce the vectorsx andn such that

x =
1

Î2TsMgT + md
sMv1 + mv2d, sB1d

n =Î mM

2TsMgT + mdgT
sv1 − gTv2d. sB2d

The scalar productsV ·u1
' andV ·ur can be expressed as

V ·u1
' = hFsgT − 1dx ·u1

' + ÎgTSÎm

M
+ÎM

m
Dn ·u1

'G
+ v1l, sB3d

FIG. 8. a1 vs a2 where equipartition is obtained forL=8R and
for different values of disk radiusr /R=0,1,2,3,5snumber label-
ing each curved.
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V ·ur = hFsgT − 1dx ·ur + ÎgTSÎm

M
+ÎM

m
Dn ·urG

+ v1
L

2
sinu, sB4d

whereh=Î2T/ sMgT+md.
Let us introducej=v1

ÎI /2TgR. The translational energy
loss is given by the formula

o
p=±1

FE dlE du1

2p
E dxE dnE dj exps− x2 − n2 − j2d,

uV ·u1
'uQspV ·u1

'dQSL

2
− uluDDE1

T + sR+ rd

3E duE du1

2p
E dxE dnE dj exps− x2 − n2 − j2d

3uV ·uruQspV ·urdDE1
TG = 0. sB5d

Since Eq.sB3d depends only onx ·u1
' andn ·u1

', one can
freely integrate over the direction ofu1 for the vectorsx and
n, and similarly for Eq.sB4d. The integration overu1 can be
easily performed.

We introduce the three-dimensional vectorsGu1
' andsu1

'

with components:

Gu1
' = sG1,G2,G3d, sB6d

=ShsgT − 1d,hÎ gT

mM
sm+ Md,lÎ2TgR

I
D , sB7d

and

su1
' = ss1,s2,s3d, sB8d

=sx ·u1
',n ·u1

',jd. sB9d

Respectively, one has to introduceGur
andsur

vectors asso-
ciated with collisions on the circular parts of the capped rect-
angle by changingu1

' in ur andl by sL /2dsinu. By inserting
Eq. s21d in Eq. sB5d, the average energy loss can be rewritten
as

o
p=±1

E
−L/2

L/2

dlE dsu1
' exps− su1

'
2 duGu1

' ·su1
'uQspGu1

' ·su1
'd

33 1

2M

s1 + ad2sGu1
' ·su1

'd2

S 1

m
+

1

M
+

l2

I
D2

−
s1 + adGu1

' ·su1
'

1

m
+

1

M
+

l2

I

hSgTs1 +ÎmgT

M
s2D4 + sR+ rd

3E
0

2p

duE dsur
exps− sur

2 duGur
·sur

uQspGur
·sur

d

33 1

2M

s1 + ad2sGur
·sur

d2

S 1

m
+

1

M
+

L2 sin2 u

4I
D2 −

s1 + adGur
·sur

1

m
+

1

M
+

L2 sin2 u

4I

3hSgTs1 +ÎmgT

M
s2D4 = 0. sB10d

By defining a new coordinate system in which thez axis
is parallel toG, one finds that the integrals of Eq.sB10d
involve Gaussian integrals of the form

E dsexps− s2dsuGuszd2Qs±szdGisz =
p

2
uGu2Gi sB11d

and

E dsexps− s2dsuGuszd3Qs±szd =
p

2
uG3u, sB12d

which finally leads to Eq.s25d. The equation for rotational
energy is derived following exactly the same procedure.

APPENDIX C: INTEGRALS

The coupled equationss25d and s26d depend on the eight
integralsI1

01sa,kd, I2
03sa,kd, I1

11sa,kd, I2
13sa,kd f24g, J1

01sa,kd,
J2

03sa,kd, J1
11sa,kd, J2

13sa,kd which can be expressed in terms
of transcendental and special functions. For completeness,
we give below their expressions,

I1
01sa,kd =Îa

k
lnsÎak+ Î1 + akd

+Î1 − a

k
arctanSÎs1 − adk

1 + ak
D , sC1d

I2
03sa,kd =

a3/2

Îk
lnsÎak+ Î1 + akd +

s1 − adÎ1 + ak

2s1 + kd

+
1 + a − 2a2

2Îks1 − ad
arctanSÎs1 − adk

1 + ak
D , sC2d

I1
11sa,kd =

Îak+ 1

2k
+

1 − 2a

2Îak3/2
+ lnsÎak+ Î1 + akd

−
Î1 − a

k3/2 arctanSÎs1 − adk
1 + ak

D , sC3d

I2
13sa,kd =

Î1 + aksak− 1 + 2ad
2ksk + 1d

+
Îas3 − 4ad

2k3/2 lnsÎak

+ Î1 + akd +
Î1 − as1 − 4ad

2k3/2 arctanSÎs1 − adk
1 + ak

D ,

sC4d
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J1
01sa,kd = aKsÎ− akd + s1 − adPs− k,Î− akd, sC5d

whereKsxd andPsx,yd denote the complete elliptic integral
of the first kind and the incomplete elliptic integral of the
third kind, respectively,

J2
03sa,kd = Sa2 −

s1 − ad2

2sk + 1dD
KSÎ ak

s1 + akd
D

Îs1 + akd

+
s1 − adÎs1 + akd

2sk + 1d
ESÎ ak

1 + ak
D

+
s1 − ads2ak+ a + k + 2d

2sk + 1d2Îs1 + akd
PS k

k + 1
,Î ak

1 + ak
D ,

sC6d

whereEsxd denotes the complete elliptic integral of the sec-
ond kind,

J1
11sa,kd = −

a

kÎs1 + akd
KSÎ ak

1 + ak
D

+
Î1 + ak

k
ESÎ ak

1 + ak
D

−
1 − a

ksk + 1dÎs1 + akd
PS k

k + 1
,Î ak

1 + ak
D ,

sC7d

and, finally,

J2
13sa,kd =

1 + 2ak− 3a2 − 4a2k

2ksk + 1dÎ1 + ak
KSÎ ak

1 + ak
D

+
Î1 + aks2ak+ 3a − 1d

2ksk + 1d
ESÎ ak

1 + ak
D

+
k + 4a2k − 3a + 3a2 − 5ak

2ksk + 1d2Îs1 + akd
PS k

k + 1
,Î ak

1 + ak
D .

sC8d
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