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Boltzmann equation for a granular capped rectangle in a thermalized bath of hard disks
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By using the Boltzmann approach, we study the steady-state dynamics of a granular capped rectangle placed
in a two-dimensional bath of thermalized hard disks. Hard core collisions are assumed elastic between disks
and inelastic between the capped rectangle and the disks, with a normal coefficient of restitdtion
Assuming a Gaussian ansatz for the probability distribution functions, we obtain analytical expressions for the
granular temperatures. We show the absence of equipartition and investigate both the role of the anisotropy of
the capped rectangle and of the relative ratio of the bath particles to the linear sizes of the capped rectangle. In
addition, we investigate a model of a capped rectangle with two normal coefficients of restitution for collisions
along the straight and curved surfaces of the capped rectangle. In this case one observes equipartition for a
nontrivial ratio of the normal coefficient of restitutions.
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I. INTRODUCTION of the present authors studied a two-dimensional system

Granular matter is characterized by the existence of dissicOMPosed of a single granular needle in a thermalized bath
pative forces between particles. In order to sustain a collecf Point particles20] in a NESS. For inelastic needle-point
tive motion, it is necessary to provide energy continuously.COH'S'OHS' the rotational granular temperature is smaller than
When power supply is sufficiently copious, the assembly othe translational one while both are less than the bath tem-
granular particles attains a nonequilibrium steady statgerature. The validity of the theoretical predictions was con-
(NESS [1,2]. An important parameter is the granular tem-firmed by a comparison with numerical simulations of the
perature that is defined as the second moment of the velocitypodel. While this study provided useful insights, the infini-
distribution. It is a source of both fascination and inconve-tesimal width of the particle is obviously an idealization.
nience that the well-known properties of temperatures char- Our objective in the present article is to consider a more
acterizing thermal systems are not necessarily transferable tealistic system where both the tracer particle and bath par-
granular temperatures. In particular, recent theoref@a8]  ticles are of a finite extent. Specifically, we consider a capped
and experimental9,10] work, has shown that in a binary rectangle in a bath of thermalized hard disks. Fortunately,
granular system the two species have different granular tenglespite the increased complexity, it is still possible to obtain
peratures that are nontrivial functions of the microscopic paan analytic solution of the steady state kinetic equations. The
rameters(mass, size, coefficient of restitution). Although  principal difference between the capped rectangle-disk and
the absence of equipartition is not surprising for a dissipativeneedle-point systems is that two kinds of collision are pos-
system sustained in a NESS, quantitative investigations argible in the former compared to one in the latter: a disk can
necessary since the granular temperatures play an importagellide with either the sides or the caps of the capped rect-
role in hydrodynamic descriptions of these systems. For exangle. If each type of collision is characterized by different
ample, the absence of equipartition in binary mixtures yieldshiormal coefficients of restitution, we show that equipartition
granular temperature gradients which enhance segregatidi¢tween the translational and rotational degrees of freedom
[11]. In addition, the extension of the fluctuation-dissipationcan be obtained for specific values of these parameters. Con-
theorem is an important issue in the context of granular gasezequently, for appropriate ranges of the coefficients of resti-
[12]. Other consequences of the absence of equipartition irtution the translational granular temperature may be less than
clude the ability of a binary system to exhibit a segregatioror greater than the rotational one.
phenomena in a “Maxwell demon” experimefit3]. The
reader is a[so referred to the 'homo'geneous cooling state of a Il. MODEL AND COLLISION RULES
granular mixturg 14] and the impurity probleni15].

Most of the above-referenced studies examined assem- We investigate a two-dimensional system consisting of a
blies of spherical particles. Yet, in reality, the particles com-hard capped rectangle of total lendth 2R, radiusR and
posing granular systems are to some degree anisotropic andassM with a moment of inertid (the value of which is
in many cases, strongly so. Even if the particles are smoottgiven in Appendix A. The bath consists of hard disks of
each collision results in some exchange and, possibly, loss ohassm and of radiug. Collisions between bath particles are
rotational kinetic energy. There are relatively few studies ofassumed elastic, and the temperaftref the disks remains
these systemgbut see, for example, Ref$16-18) and constant. Conversely, collisions between disks and the
fewer still that focus specifically on equipartition. Huthmann capped rectangle are inelastic. In the following, we detail the
et al.[19] used kinetic theory to examine the free cooling of collision rules that are necessary to develop the kinetic
granular needles in three dimensions and, more recently, twiheory.
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The vector positions of the center of mass of the capped i L/2 (a)
rectangle and a disk particle are denotedrbyandr,, re-
spectively. The orientation of the capped rectangle is speci-
fied by a unit vectow; that points along the long axis. Let
ri,=r,—r, anduj denote a vector perpendicular tg. A
collision between a capped rectangle and a disk can take
place either on the linear part or on the circular parts of the
former. LetO and C denote the center of the capped rect-
angle and the point of collision, respectively. We definas
the projection ofOC on the long axisA=0C -u;. At the
instant of collision, the quantities just introduced satisfy the
following equations:

riz-upl=(R+1), (1)

M

2R

if [\|<L/2, and

riz-u = (R+1) +

: )

if R>|\|-L/2>0, whereu, denotes the unit vector of the
collision axis(see Fig. 1 The relative velocity of the point
of contactV is given by

V=V12+ w1XOC, (3)

where w, denotes the angular velocity.

The pre- and post-collisional quantitiéthe latter are la-
beled with a primg satisfy the following:

e Total momentum conservation, FIG. 1. Geometry of the capped rectangle and a disk in the
plane:r {, denotes a vector joining the point labeled 2 and the center
of the capped rectanglg,is the projection of the vectddC on the
long axis of the capped rectangl@ Collision between the recti-

« Angular momentum conservation with respect to thelinear part of the _capped rectangle and a diskjs a uni_t vector
point of contact, along the long axis of the capped rectangle a;ﬁds a unit vector

perpendicular to the axis of the capped rectan@lg Collision be-
lwik =lwk +mOC X (v, -V',), (5) tween the circular part of the capped rectangle and a djskndu,
are unit vectors normal and tangential to the surface at the point of
contact, respectively.

Mv'; +mv', = Mvy + mvs,. (4)

wherek is a unit vector perpendicular to the plane.
As a result of the collision, the relative velocity of the
contacting points changes instantaneously according to the

following relations: By combining Eqs(3)—(6) one obtains, after some alge-

bra, the change of the capped rectangle momen#ipn

V' -ui =-aV-uy, (6)  =M(v;-v,) for a collision along the linear part,
1
V' up=Voug, ) Ap_uf:_(1+a)v.u;' (10)
where « is the normal coefficient of restitution. e + 1 + A
When the collision occurs on the circular parts of the m M
capped rectangle, the collision rules are given by for [\|<L/2 and at the two ends of the capped rectangle,
V,'Ur:_OZV'Ur, (8) (1+a’)V'U
e R T e o
V,'Ug:V'ulg, (9) —_ — 4 —
m M 4]

whereu, andu, denote the unit vectors associated with the
circular part of the capped rectangleee Fig. b)) and#  for R>|\|-L/2>0 with cos#=(\-L/2)/R.
denotes the angle between the direction of the long axis of
the capped rectangle and the axis defined by the contact lIl. KINETIC THEORY
point and the center of the disk.
The tangential coefficient of restitution is set to one for ~Since we are interested in the homogeneous state, the dis-
the sake of simplicity. This choice is reflected in the form oftribution functionf(v,, ;) of the capped rectangle obeys the
Egs.(7)—9). pseudo-Liouville equation,
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f(vq, dé — T O(R+L/I2—|N\)O(\|-L/2
(Va0 _ f_l f v, f dr, Toaf (v, 01,v5), 12% O/ DO - L12)
ot 2T L L
(12 X5<|r12'ur|_<r+R+Ez(|7\|_E>)>
@ i istributi i dros- dro-
where f9(vy,w;,v,) is the fjlstrlbuﬂon-functlon o.f.the x’ Iri2- Uy ®<_‘ [EPR >(b12_1)_ (16)
capped rectangle and a disk, afd, is the collision dt dt

operator between a capped rectangle and a disk. The

number density of the bath particles is given by - .

n=fdv; doy dvofP(vy, w1,Vy). The others terms'qf the collision operator corresp?nd to
Defining the granular temperatures as quadratic averagd® Necessary conditions of conta@i(L/Z—|)}|)5(|r12-u_1|

of the appropriate velocity distribution, one has, ~("*+R), and approach®(-|diry,-u|/dt) in the first

=M/2(v2) and Tg=1(w? for the translational and rotational ase and®(R+L/2=[\)O(\|-L/2)&(r1o-ur|~[r+R+(L/

granular temperatures, respectivéiye angular brackets de- 2R)/(A|=L/2)]), and approaci®(~|d|r ;,-u|/dt)) in the sec-

note an average with respect to the velocity distribution funcond case.

tion of the capped rectangfév,, ;). By taking the second  In order to obtain a tractable solution we invoke the as-
moment with respect of the velocity and of the angular ve-Sumption of molecul_ar chaos_ that allows the factorization of
locity of Eq. (12), one obtains two particle distribution function,
fA(vy, wq,V5) = f(Vy, 0)D(Vy), 17
2= [ v [ dowanvitnon] e
M at wheref(v4, ;) is the angular and translational velocity dis-
de, = .o 5 tribution function of the capped rectangle addv,) is the
=f “‘del Aoy >~ dvy drp Toof (V1 @1,Vo)V7, velocity distribution function of a disk. This assumption is
valid in the limit of low density and corresponds to the
(13 Boltzmann approximation.
By taking the second moments of the distribution function
ITr ) of the capped rectangle and after substitution of the collision
m:fdvlj dw; dwif(vy, @1)] operator(Eq. (15)), one obtains explicitly for the transla-
tional kinetic energy,
= J T f dV1 d(Dl%dVZ drz lef(z)(vl,wl,V2)wi.
27 j e f dr2 dVl dVZ d(i)]_ d01|:(|_/2 - |)\|)§(|r12 . Uf|
(14)
. . - ‘d|r12-uf| ( ‘d|r12-uf| )
In the stationary state the time derivatives of the left-hand -r+R)|——————|0O| - | ——
side of these two equations are equal to zero. dt dt
By considering the integrals, Eq&l3) and (14) as inner Xf(vl,w1)¢>(v2)AEI+ O(R+L/2-|\)O(]\]-L/2)
products, the time dependence can be assigned to the dy-
namical variablesy; and »;, and this requires the introduc- ><5(|r12- u,| - {r +R+ L(m - E)D
tion of the adjoint ofT;,, Ty, (for more details, seg21]). 2R 2
The collision operator between the capped rectangle and a dlr - uy dlr -y .
disk, T1,, must include the change in quantitié®., velocity p ®<— T )f(vlrwl)q)(VZ)AE]_

and angular momentunproduced during the infinitesimal
time interval of the collision. This operator is different from =0. (18)
zero only if the two particles are in contact and if the par-

ticles were approaching just before the collis[@2]. For a  where DeltaE] is the energy change of the capped rectangle
collision between a disk and the rectilinear part of the cappedluring a collision with a both disk.

rectangle, the explicit form of the operator, given by A similar equation can be written for rotational kinetic
energy. Since the impulse of the collision depends on the
Tio% O(L/2 = \))8(rp-ui|-r - R) location of the impact, it is easy to show that the solution is
dr - U] dr - U] not a Gaussian, a property already observed in the model of
% ‘ 412 71l @<_ 412 71l )(blz_ 1), a needle and poin{20]. However, the actual distribution is
dt dt expected to be close to Gaussian, if the normal coefficient of

(15) restitution is not too small. Moreover, when the anisotropy of
the granular particle goes to zero, one recovers the results
whereb,, is an operator that changes pre-collisional quanti-obtained by Martin and Piaseckl], i.e., the velocity distri-
ties to post-collisional quantities ard(x) is the Heaviside bution is exactly Gaussian for all values of the normal coef-
function, and for a collision at two ends of the capped rectficient of restitution. Conversely, when the anisotropy is very
angle, large, one approaches the needle-point system for which we
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showed(by simulatior) that the deviation from a Gaussian - 'o 5
distribution is quite small, even for coefficients of restitution ~ AE1 = 5((601) = (w1)%)

of 0.2[20].
Since the deviations from the Maxwell distribution are __Ml+a)V U3 (w1 + wy)
small, we use it as a trial function. That is, we assume that B 2 1 1 a2
m M |
le2 Iwi 1 2 2 1\2
f(vy,wy) cexpl - —=-—=], (19 \(1+a) VU +7\(1+a) (V-up)
2yT 29T = D71 22 ( 1 1 )\2)2 ’
—+—+— 2l —+—+—
m M | m M |

where yr and yg are the ratios of the translational and rota-
tional capped rectangle temperatures to the bath temperature (23)
T, respectively. The velocity distribution functioh(v,) of  and forR>|\|-L/2>0,

bath particles is given exactly by | sin gV
sinoV - U,w;

AET=~(1+
2 ( a)2<£+l+L23in26)
D(vy) ~ em(— 2—T2> , (20) m M4l
1+a@)?L2si? 6V -u,)?
, Ly L2sir? OV -u)? 24
since bath particles interact by elastic collisions. 8I<1 L1t sir? 9)
In summary, in order to obtain the granular temperatures M 4]
of the capped rectangle, it is necessary(ijocalculate the
change of translational and rotational energy occurring dur-
ing a collision; (i) perform an average over all degrees of B. Granular temperatures
freedom of the collision integral. After inserting Eqs(19) and(20) in Eq. (18) it is neces-

sary to perform integrations over each variable in the corre-
sponding equation for the rotational energy. Details of this

IV. CALCULATION AND RESULTS rather technical task are given in Appendix B. After some

A. Energy changes during a collision tedious calculation, one obtains the following set of equa-
tions:
When a disk collides with the capped rectangle, the o o1
change of the translational kinetic energy of the latter is blcli(ak) + (1 -c)J(a,k)]
given by l+a
= lelak +(1-09%(@kl, (29

T_M "n2 _ 2
AE; =S ((v)* = (v)) a[cli(ak) + (1 - )3tk ak)]

1 Ap? 1+
TPVt =k - (1-0F @kl (26
:_(l_l_a)V‘UfVl'Uf 1 (L+a)AV-up)? where
1 1 A2 2M<1 1 xz)z’ )
—+—+— —+—+ — L
m M | m M | k=?, (27)
4=+ =
29 (m M)
for |\|<L/2, and M+m
A=YV, (28)
M + my;
AET: _ (1 +a)V “UpVy - Uy + i (l +a)2(V 'ur)2
U1 1 L%siPe 2M (1 1 LZsirPg\% _. M+m
—+—+ —+—+ e : (29
m M 4 m M 4 M +myr
(22 and
L/2
for R>|\|-L/2>0. (30

cz=——mmmmm

L . . L/2+(r+R

The collision also results in a change of rotational energy, ( )
for |\|<L/2, andIyP andJ;P are given by
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in(l +uy X2) p/2

1
1"P(y,v) = f e
0

(L+vx®m

(31)

PHYSICAL REVIEW E 71, 051306(2005

0.05

0.04

(1 +uv sir? §)P?
(L+vsif o™’

e = 0.03
IP(u,v) = J de sir’(6) (32 0.8 -+
0

= 0.02

Explicit expressions for the integrals appearing in Egs. 0.01
(25) and(26) are given in Appendix C. Equatiof26) is an ol o1y 1,1, %
implicit equation fora that, for a given value of, can be : 0.6~ 0 02 04 06 08 1 ~Z727 —
solved with standard numerical methods.is then easily 4

obtained by calculating the ratio of integrals of H@5). L 4 i
Finally, from the values of andb, v; and yz can be ob- 2
tained from Eqs(28) and (29). T

A first check is the elastic case=1, for which one ob- 041 o N
tainsa=b=1 which givesy;=1 and, sincea/b=yg/ y1, g g
=1, i.e., the temperatures of translational and rotational de- B L ]
grees of freedom are the same and correspond to the bai @
temperature, a property of an equilibrium system.

In the limit R— 0 andr — 0, for whichc— 1 correspond-
ing to a needle in a bath of point particles, one recovers the
results of Ref[20]. More interesting is the limiR— 0 with 1 . T T T . T .
r remaining finite, i.e., a needle in a bathaisks By using 0.05
Eqg. (30) one obtains that=L/(L+2r). Sincec<1, unlike -
the simple needle-point system, there is a contribution result-
ing from collisions between bath particles and the needle’s 0.8 s 003
tips. This type of collision is dominant when the bath par- T
ticles are larger than the longest dimension of the anisotropic 0.02
particle.

To illustrate the effect of this contribution, Figs.a2 and Ll Ll g
2(b) compare the system of a needle in a bath of point par-=; 0.6 |- Oo 02 04 06 08 1
ticles and the system of a needle in a bath of disks, the radiu” o e
of disksr are equal td_/4 in Fig. 2a) andr=9L/2 in Fig. s
2(b). It is noticeable that the translational and rotational tem- 7,
peratures of the latter system are smaller than those of th L
needle in a bath of points, an effect that becomes more pro 04|~ L
nounced when the radius of the disks becomes larger than th o
length of the needle. - g .

The differencey;— yg is shown in the insets for the needle st (b)
and the bath of points and for the needle and the bath of 02 | . l . | . l .
disks. Note that the translational temperature is always large 0
than the rotational temperature and that the difference de-

pends very weakly on the size of the radius of the bath par- £ 2 Ratio of the translationdfull curve) y; and rotational
ticle. Additionally, the difference increases when the coeffi-,_ (dashed curegranular temperature to the temperature of the
cient of restitution decreases from(dlastic casg reaches a  path versus the normal coefficient of restitutierior a system of a
maximum for a value o&r~ 0.3 and decreases slightly when needle and a bath of points and a system of a needle and a bath of
the coefficient of restitution decreases further. disks forc=2/3 (a) and forc=1/10. The curves corresponding to
Figure 3 shows the influence of the anisotropy of thethe needle-point system are always above those for the needle-disk
tracer particle. The rotational temperature is always lowesystem(b). The insets display the differences—yg vs « for the
than the translational temperature whatever the elongation afeedle in the bath of diskull curve) and the needle in the bath of
the particles, but the effect is greater when the elongation igoints (dashed curve
large. The two upper curves correspond the translatidnkl
curve and rotational(dashed curve temperature of the 1+a
capped rectangle whdr=R, the two intermediate curves to Y=,
granular temperatures whér 3R, and the two lower curves 2+ m(l -a)
for a capped rectangle with=10R. M
When the anisotropy of the capped rectangle approaches
zero, i.e.,L/R—0, c—0, one can show by using Eq®5)  which is the the result of Martin and Piasedi] for a
and (26) that spherical tracer particle in a bath of spherical particles.

1 I 1 I 1 I 1 I 1
02 0.8 1

0.04 === .

1 I 1 I 1 I 1
N

0.01

(33
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FIG. 3. Ratio of the translationdfull curve) y; and rotational FIG. 4. Ratio of the granular temperatures (full curve) yg

vr (dashed curvegranular temperature to the temperature of the(dashed curveto the bath temperature as a function of the mass
bath versus the normal coefficient of restitutianfor a capped ratio m/M, for a homogeneous capped rectangle vt /7.
rectangle and a bath of disksR, for different values of the aniso-
tropy, L=R, 3R, 10R, top to bottom in each group.

ture remains higher than the rotational temperature for each
Moreover, the limitL/R— 0 leads ro equipartition between value of a.
the rotational and translational granular temperatures, a re-
sult which is different from a model of pure spherical par-
ticles where, in the absence of tangential friction, the par- v NONUNIFORM COEFFICIENT OF RESTITUTION
ticles cannot exchange rotational energy. In physical
systems, the particles are never completely spherical and our |, practice it may be difficult to construct a capped rect-
model shows that if an infinitesimal amount of anisotropy ISangle for which the coefficient of restitution is constant over
fie entire perimeter. It is clear, for example, that if the object

equal in the steady state. Although our analysis provides N composed of a homogeneous viscoelastic material, colli-

quantitative information about the relaxation time to reachg -\ vt the ends will be characterized by a smaller coef-
this NESS, it is likely to be very long in this limit of small Y

. ficient of restitution than collisions with the linear part. This
anisotropy. effect becomes more pronounced as the elongatioR)
increases. Other possibilities exist for a nonhomogeneous
capped rectangle composed of two or more materials. For

We consider a homogeneous capped rectangle of Mass example, a hard material may be used to construct the caps.
in a bath of disks each of mass for which M #m. When  In addition, the coefficient of restitution could depend on the

C. Influence of mass ratio

m/M — 0 one obtains, from Eq$25) and(26), that relative velocity of the point of impadi23], an effect that
1+ one neglects here as a first approximation.
- @ (34) As a first approach to describe this possibility, we con-
YT=MR , . . . . -
2 sider in this section a capped rectangle where the coefficient

é)f restitution is equal tay, for a collision along the rectilin-
par part of the object and equal tg, for one along the
ﬁircular part: see Fig. 5. Using the procedure outlined above
one obtains the following set of closed equations:

i.e., equipartition between the degrees of freedom of th
tracer particle, but not between the bath and the tracer pal
ticle. This is, moreover, the same result for a needle in a bat
of point particles.

We conjecture that this result is general in the sense that
we expect equipartition between the different degrees of

freedom of the tracer particle in a bath of light particles, b((1 +apclfak) + (1 +ay)(1-0)3a,k)
whatever the shape of the tracer particle and the dimension 2 2

. .. . _ 1+ a’l) 03 (1+ az) 03
of the system. The behavior for finite values of the ratio = TCIZ (a,k) + ———(1-0¢)J5(a,k),
m/M is shown in Fig. 4. The granular temperatures decrease
when the ration/M increases, and the translational tempera- (35
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0.8

FIG. 5. Sketch of the capped rectangle with two coefficients of " 0.7 |-
restitutiona, (rectilinear parnt and «, (circular parj.

a((1+apcli(a,k) + (1 +a)(1-c)3iHak) 06
(1 +ay)? (1+ay)? i
= Tcl?(a, )+ =1 -3 ak). sk
(36) - .
1 I 1 I 1 I 1 I 1
Figure 6 shows the ratio of translational and rotational tem- 0'40 0.2 0.4 0.6 0.8 1
perature of a capped rectangle wixr and L=2R to the o

temperature of the bath as a function of the normal coeffi- S .
cient of restitutiona, with a fixeda;=0.5. One notes thatthe ~ FIG. 7. @1 vs a; where equipartition is obtained fo=R and
translational temperature becomes smaller than the rotationgifferent values oL=R, 2R, ..., 5R from bottom to top.
temperature fow,>0.765. When the two curves cross, eg-
uipartition is recovered, but unlike the limiting cases dis- One can determine in general when equipartition is recov-
cussed above of a capped rectangle with a uniform coeffiered for a capped rectangle with two coefficients of restitu-
cient of restitution (light bath particles, infinitely small tion. Using the relatiora=b (assumption of equipartition
anisotropy, for a nontrivial value of coefficient of restitution and Eqs.(35) and (36), one obtains two implicit equations
a, and, moreover, for larger values aof the ratio of tem-  with the three parameterg,, a, anda. A simple numerical
peratures is inverted. procedure allows us to obtaim, as a function ofw;.

Figure 7 shows the equipartition lines in theq, a,)
. I . I T I T I T space. Above each line, corresponding to a given elongation
of the rectangleTg> T while the reverse inequality applies
to the region below the line. It is noticeable that as the elon-
gation increases, the region of the;,a,) space wherdy
>T; decreases.

Figure 8 shows the role of the size of the bath particles on
the existence of equipartition of a capped rectangle of length
L=8R. For small bath particles, only a small range ®f
(between 0 and-0.3) with a smaller range ofy, ( between
~0.89 and ] allows equipartition for the tracer particle. For
larger bath disks, all values af; (between 0 and )lare
available with a smaller corresponding rangeagf

VI. CONCLUSION

We have investigated the influence of the anisotropy of a
tracer particle in a bath of thermalized disks in two dimen-
sions. By using a mean-field approach, we have obtained
0.3 RN S R D Y analytical results for the rotational and translational tempera-
tures. For a homogeneous capped rectangle with a uniform
normal restitution coefficient, the translational temperature is

FIG. 6. Ratio of the translationafull curve) y; and rotational ~ @lways higher than the rotational temperature, with the dif-
¥ (dashed curvegranular temperature to the temperature of theférence depending on the elongation of the tracer particle, the

bath versus the normal coefficient of restitutiap with a normal ~ Size of the bath particles and the mass ratio.
coefficient of restitutiona; =0.5 for a homogeneous capped rect- At present, the exact dependence of the coefficient of res-

angle withM=m, L=2R andR=r. Note that equipartition is recov- titution on the position of the point of impact is unknown. It
ered for a nontrivial value ofe,. seems likely, however, that it is not constant along the pe-
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1 T - RZ [L\?| 2 L)2
-0 lo,= pRY 7R > *5 +§L 3R%+ 5 .
r=5
I 1 (A3)
By substituting the density as a function of the total mass of
0.95 = . the capped rectangle,
- . 2L<3R2+ (E>z>
: ()
=M 3 i 2 (A4)
ey 7 B 7R+ 2L '
i | Two well-known limits are recovered,
2
lim lg,= ——, A5
0.85 - Ro0 0 12 (AS)
1 | I ] 1 | I | 1 2
0 0.2 0.4 0.6 0.8 1 lim 1o,= @_ (A6)
o, L—0 2

FIG. 8. a; Vs a, Where equipartition is obtained far=8R and ~ For an inhomogeneous capped rectangle, the moment of in-
for different values of disk radius/R=0,1,2,3,5(number label- ertia depends on the mass distribution. However, it is pos-
ing each curvg sible to determine the lower and upper bounds for allowable

values.

rimeter. As a first approximation, we considered an extension A trivial lower bound of zero is obtained when the mass is
of the model where it takes on two values: one for collisionsconcentrated at the center. Conversely, when the mass is dis-
with the linear part and another for collisions with the caps fributed equally at the two extremities of the objépbint
In this case the difference between the translational and rghasses oM/2 at a distance df +R from the center on each
tational granular temperatures can be either positive or neg&id®, one obtains
tive depending on the values of the coefficients of restitution _
and the other parameters. It is clearly possible to generalize I=M(L/2 +R)?, (A7)
the calculation to allow for a continuously varying restitution \yhich gives the upper bound for the moment of inertia.
coefficient and an arbitrary convex body.

It would also be interesting to investigate a system of a
tracer particle with a small anisotropy where the tangential APPENDIX B: NEEDLE AVERAGE ENERGY
coefficient of restitution has a nontrivial valug-1< ay LOSS

<1) where the limits correspond to a perfectly rough and a  as for binary mixtures of spherdd], we use a Gaussian
perfectly smooth surface, respectively. The intermediate situansatz for the distribution functions and introduce two differ-
ation corresponds to some friction which is important inent temperatures corresponding to the translational and rota-
some granular systems. tional degrees of freedom of the neefi®)].

The homogeneous distribution functions of the needle and
of the points are then given, respectively, by EG®) and
(20)

For a homogeneous capped rectangle, the moment of in- We introduce the vectorg and » such that
ertia is given by 1

C\2T(Myr +m)

Y VPR -
v= 2T(MyT+m)yT(V1 Y1Vo). (B2)

The scalar product¥ -u;” andV -u, can be expressed as

M:ffpdxdy:p(ﬂ'R2+2LR), (A2) —{ Im M
s V-up=h (yT—l)X-Uf+\'7T<\/M+\/E>V'Uf

which gives + wq\, (B3)

APPENDIX A: MOMENT OF INERTIA

X (Mvy +mv,), (B1)

loz= f f p( +y?)dx dy, (A1)
S

and the mass of the system is
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V.u h{( Dy-u, + T( V AL \ M) U} X 1 (1+a)2(G“r'SJr)2 (1+a)G, -8,
. = —_— . \ —_— — |y - [ —
' IR N v m ' 2|v|<1 1 L2sir? 0)2 1 1 L2%sire
4+ =+ S+ =+
L . m M 41 m M 4
+wi= Sin g, (B4)
xh| y58,+ 1| —2s, ] | = 0. B10

whereh=\2T7(M_T+m). [ Vi (B10

Let us introduceé=w,\1/2T,R. The translational energy
loss is given by the formula

By defining a new coordinate system in which thaxis

d01J f f s o o is parallel toG, one finds that the integrals of E¢B10)
d\ | — | d d d - —-vrr-£),
Eﬂ“ f277 X | dv | déexp(-x?- 7~ &)

Since Eq.(B3) depends only ory-u; andw-u;, one can

involve Gaussian integrals of the form

V- uile(pv -uf)®(§—|x|)AEI+<R+r> f dsexpi-)([Gls)?0(xs)Gss, = 7|66, (B1D

deef%fdxfd”fdfexﬂ‘xz-vz—fz) and
o

_ 3 _M~3
VI AEI}:O_ 5 j dsexp-(|Gls)O(xs) = 2/67,  (B12)

which finally leads to Eq(25). The equation for rotational

freely integrate over the direction af, for the vectorsy and ~ €neray is derived following exactly the same procedure.
v, and similarly for Eq.(B4). The integration ovep; can be
easily performed. APPENDIX C: INTEGRALS

We introduce the three-dimensional vectﬁﬁf and Sus
with components:

The coupled equation®5) and(26) depend on the eight
integrals!(a, k), 15%(a,k), 13%(a,k), 13%a,k) [24], 3%%a,k),

Gyt = (G, G2, Gy), (B6)  J5(a,k), 3t a,k), 13%a,k) which can be expressed in terms

of transcendental and special functions. For completeness,

o7 we give below their expressions,
:(hm—n,h ﬁ(mwm/l—w‘), (B7)

19%(a,k) = \[E In(\ak+ 1 +ak)

and
V Kk V 1+ak
=(x-up,v-uy.é. (B9)

. . E E— (1-a)Vl+ak
Respectively, one has to mtrodu(‘;‘eJr and Sy, Vectors asso- |g3(a, k) = — In(Vak+ 1 +ak) + —————
ciated with collisions on the circular parts of the capped rect- v 2(1+Kk)
angle by changing; in u, and\ by (L/2)sin 6. By inserting 1+a- 232 (1-a)k
Eqg.(21) in Eq. (B5), the average energy loss can be rewritten + —— arctar< ) , (C2
as 2Vk(1-a) 1+ak

L/2 )

d\ | ds,Lexp(=s1)|Gyr - St O(pGeL - jak+1 1-2a —
pz,l i f Sut eXP(=5,1)|Guy - 5,1 {O (PG - Su2) 1ak) = + 222 n(ake T ak
, , 2k 2vakd
1+a)(Gye - —

o| 2 zsu 1lz) _V-a arctaf< 5 _a)k) (C3

2M (1+l+’\_) K32 1+ak /)’

m M |
(1+a)GyL st ( m 1+akiak—1+2a) a(3-4a)

—_ #h S, + ll— + R+ r 13, - v v Jr/_

1 . l . }\_2 Y1 M S ( ) |2 (avk) 2k(k+ 1) + 2k3/2 In(\ak

m M | I P—
—— \1-a(1-4a) r( /(l—a)k)
++v1+ak)+ ———=>—— arcta ,
' ) 24372 1+ak

2
xf o|¢9fo|q,r exp(-s})|Gy, - 5,/0(PGy, - sy)
. : ((eZ)
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I a,k) =aK(y-ak) + (1 -a)l(-kV-ak, (C5) Pak-- 2 K( [ ak )
1 kv(1 +ak) 1 +ak
whereK(x) andIl(x,y) denote the complete elliptic integral M+ ak ak
of the first kind and the incomplete elliptic integral of the A E<\/ )
third kind, respectively, k 1+ak
~ l-a H( k ak )
K( [ ak ) k(k+D\(1+ak \k+1'V1+ak/’
1-a)? 1+ak
I3(ak) = (az— ; k+ai ) , ( ) (C7)
k+D)/ N2 +ak and, finally,
i
. ';)k"(11+ ak E( \/1 ak k) Wak = L2k 3a? - 4a2kK( [ ak )
+ + K) = ,
D ? ? 2k(k+ 1)1 +ak 1+ak
1-a)(2ak+a+k+2 k k
. == )H<k+1“/1iak)‘ \r1+ak(2ak+3a—1)E( ["ak )
2+ DN +aky 2k(k+ 1) 1+ak

(C6)

whereE(x) denotes the complete elliptic integral of the sec-
ond kind,

+k+4a2k—3a+3a2—5akn( k \/7)
2k(k+ 1)%/(1 +ak) k+1' Vi1+ak/

(CY
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